
!"#$%&&'$()**#(+$,-.$+)$/012+
.)3*$("345/$,2+"$6#70-(5

!"#$%&'$()*+,-./ 0.((.1

2*3&45&6789&·&8:&;$/&+*"%

Working out the best way to serve up 4les to your users can be a tricky

business. There’s so many di<erent scenarios, di<erent technologies,

di<erent terminology.

In this post I hope to give you everything you need so that you can:

1. know what 4le-splitting strategy will work best for your site and your

users

2. know how to do it

<=.3

According the Webpack glossary, there are two di<erent types of 4le

splitting. The terms sound interchangeable, but are apparently not:

Bundle splitting: creating more, smaller 4les (but loading them all on each

network request anyway) for better caching.

Code splitting: dynamically loading code, so that users only download the

code they need for the part of the site that they’re viewing.

That second one sounds far more appealing, doesn’t it? And in fact, many

articles on the matter seem to make the assumption that this is the only

worthwhile case for making smaller JavaScript 4les.

But I’m here to tell you that the 4rst one is far more valuable on many sites,

and should be the 4rst thing you do for all sites.

Let’s dive in.

!"#$%&'()%*++*#,
The idea behind bundle splitting is pretty simple. If you have one giant 4le,

and change one line of code, the user must download that entire 4le again.

But if you’d split it into two 4les, then the user would only need to

download the one that changed, and the browser would serve the other 4le

from cache.

It’s worth noting that since bundle splitting is all about caching, it makes no

di<erence to 4rst time visitors.

(I think too much performance talk is all about 4rst time visits to a site.

Maybe this is partially because ‘4rst impressions matter’, and partly because

it’s nice and simple to measure.)

When it comes to frequent visitors, it can be tricky to quantify the impact

that performance enhancements have, but quantify we must!

This is going to need a spreadsheet, so we’ll need to lock in a very speci4c

set of circumstances that we can test each caching strategy against.

Here is the scenario I mentioned in the previous paragraph:

Alice visits our site once a week for 10 weeks

We update the site once a week

We’re updating our ‘product list’ page every week

We also have a ‘product details’ page, but we’re not working on it at the

moment

In week 5 we add a new npm package to the site

In week 8 we update one of our existing npm packages

Certain types of people (like me) will want to try and make this scenario as

realistic as possible. Don’t do that. The actual scenario doesn’t matter, and

we’ll 4nd out why later. (Suspense!)

-.&'/0(&%*#&

Let’s say our total JavaScript package is a meaty 400 KB, and we’re

currently loading this as a single 4le called main.js .

We have a Webpack con4g looking something like this (I’m leaving out non-

relevant con4g stu<):

>*)3"?@&?"((-&,=*&+*-A(,&B;"$/CD-E&1=*/&F.A&="#*&"&-$/G(*&*/,+F

(For those new to cache busting: any time I say main.js , what I actually

mean is something like main.xMePWxHo.js where the crazy string of letters is

a hash of the contents of the 4le. This means a di<erent 4le name when the

code in your application changes, thus forcing the browser to download the

new 4le.)

Each week when we push some new changes to the site, the contenthash of

this package changes. So each week, Alice visits our site and has to

download a new 400 KB 4le.

If we were to make a sexy table of these events, it would look like this.

>.+(%E-&;.-,&A//*?*--"+F&,.,"(&+.1

That’s 4.12 MB, over 10 weeks.

We can do better.

1)%*++*#,'2"+'3&#$24')0560,&(

Let’s split our packages into a main.js and vendor.js 4le.

This is easy, sort of:

Webpack 4 makes an e<ort to do the best thing for you, without you having

to tell it exactly how you want to split your bundles.

This lead to several instances of “hey that’s neat. Nice one, Webpack!”

And many instances of “WHAT THE HELL ARE YOU DOING TO MY

BUNDLES!?”

Anyhoo, adding optimization.splitChunks.chunks = 'all' is a way of

saying “put everything in node_modules into a 4le called vendors~main.js ".

With this basic bundle splitting in place, Alice still downloads a new 200 KB

main.js on each visit, but only downloads the 200 KB vendors.js in week

one, eight and 4ve (not in that order).

H/&"&;.;*/,&.I&-*+*/%3,F5&).,=&3"?@"G*-&,A+/&.A,&,.&)*&*J"?,(F&677&KLC

That’s 2.64 MB.

A 36% reduction. Not bad for adding 4ve lines of code to our con4g. Go do

that now before reading any further. If you need to upgrade from Webpack

3 to 4, don’t fret, it’s pretty painless (and still free!).

I think this performance improvement seems somehow more abstract

because it’s spread out over 10 weeks, but it’s a real 36% reduction in bytes

shipped to a loyal user and we should be proud of ourselves.

But we can do better.

1)%*++*#,'2"+'&05.'#)7')0560,&

Our vendors.js su<ers the same problem that our original main.js 4le did

— a change to one part of it means re-downloading all parts of it.

So why not have a separate 4le for each npm package? It’s easy enough to

do.

So let’s split out our react , lodash , redux , moment , etc., into di<erent 4les:

The docs will do a good job of explaining most things in here, but I’ll

explain a bit about the groovy parts, because they took me so damn long to

get right.

Webpack has some clever defaults that aren’t so clever, like a maximum

of 3 4les when splitting the output 4les, and a minimum 4le size of 30

KB (all smaller 4les would be joined together). So I have overridden

these.

cacheGroups is where we de4ne rules for how Webpack should group

chunks into output 4les. I have one here called ‘vendor’ that will be used

for any module being loaded from node_modules . Normally, you would

just de4ne a name for the output 4le as a string. But I’m de4ning name as

a function (which will be called for every parsed 4le). I’m then returning

the name of the package from the path of the module. As a result, we’ll

get one 4le for each package, e.g. npm.react-dom.899sadfhj4.js .

NPM package names must be URL-safe in order to be published, so we

don’t need to encodeURI that packageName . BUT, I had trouble with a

.NET server not serving 4les with an @ in the name (from a scoped

package), so I’ve replaced that in this snippet.

This whole setup is great because it’s set-and-forget. No maintenance

required — I didn’t need to refer to any packages by name.

Alice will still be re-downloading our 200 KB main.js 4le each week, and

will still download 200 KB of npm packages on her 4rst visit, but she will

never download the same package twice.

H,&,A+/-&.A,&,=",&*#*+F&/3;&3"?@"G*&1"-&*J"?,(F&67&KLC&>=",&"+*&,=*&.%%-M

That’s 2.24 MB.

A 44% reduction from the baseline, that’s pretty cool for some code that

you can copy/paste from a blog post.

I wonder if it’s possible to surpass 50%?

Wouldn’t that be something.

1)%*++*#,'2"+'04&0('28'+.&'0))%*50+*2#'52$&

Let’s turn to the main.js 4le which poor old Alice is downloading again and

again (and again).

I mentioned earlier that we have two distinct sections on this site: a product

list, and a product detail page. The unique code in each of these areas is 25

KB (leaving 150 KB of shared code).

Our ‘product detail’ page isn’t changing much nowadays, because we made

it so perfect. So if we make it a separate 4le, it can be served from cache

most of the time.

Also, did you know that we have a giant 4le of inline SVG for rendering

icons, weighing in at a hefty 25 KB and rarely changing?

We should do something about that.

We’ll just manually add some entry points, telling Webpack to create a 4le

for each of those items.

Good ol’ Webpack will also create 4les for things that are shared between,

say, ProductList and ProductPage so that we don’t get duplicated code.

This’ll save dear Alice an extra 50 KB of downloads most weeks.

>*&,1*"@*%&"/&$?./&$/&1**@&-$J5&"-&HE;&NA$,*&-A+*&F.A&+*?"((

That’s only 1.815 MB!

We’ve saved Alice a whopping 56% in downloads, and this saving will (in

our theoretic scenario) continue until the end of time.

And all of this is done only with changes in our Webpack con4g — we

haven’t made any changes to our application code.

I mentioned earlier that the exact scenario under test doesn’t really matter.

This is because, no matter what scenario you come up with, the conclusion

will be the same: split your application into sensible little 4les so your users

download less code.

Soon, I’m going to talk about ‘code splitting’ — the other type of 4le-

chopping — but 4rst I want to address the three questions you’re thinking

of right now.

9:;'<(#=+'*+'(%2>&4'+2'.03&'%2+('28'#&+>246'4&?"&(+(@

The answer to that is a very loud “NO”.

This used to be the case back in the days of HTTP/1.1, but it is not the case

with HTTP/2.

Although, this post from 2016 and Khan Academy’s post from 2015 both

reached the conclusion that even with HTTP/2, downloading too many 4les

was still slower. But in both of these posts, ‘too many’ 4les meant ‘several

hundred’. So just keep in mind that if you’ve got hundreds of 4les, you

might start hitting concurrency limits.

If you’re wondering, support for HTTP/2 goes back to IE 11 on Windows

10. I’ve done an exhaustive survey of everyone using an older setup than

that and they unanimously assured me that they don’t care how quickly

websites load.

9A;'<(#=+'+.&4&'23&4.&0$B/2*%&4)%0+&'52$&'*#'&05.'>&/)056'/"#$%&@

This is true.

9C;'D2#=+'<'%2(&'2"+'2#'527)4&((*2#'/E'.03*#,'7"%+*)%&'(70%%'8*%&(@

Yep, that’s true too.

Well, shit:

more 4les = more Webpack boilerplate

more 4les = less compression

Let’s quantify this so we know exactly how much to fret.

…

OK I just did a test and a 190 KB site split into 19 4les added about 2% to

the total bytes sent to the browser.

So … 2% more on the 4rst visit and 60% less on every other visit until the

end of the universe.

The correct amount to fret is: not at all.

While I was testing 1 4le vs 19, I thought I’d give it a go on some di<erent

networks, including HTTP/1.1

Here’s my table that is wildly supportive of the ‘more 4les is better’ idea:

O.A&="#*&!&I+**&;*;)*+P./(F&-,.+$*-&(*I,&,=$-&;./,=C&2$G/&A3&I.+&Q*%$A;&"/%&G*,&"/&*J,+"&./*

view rawwebpack.config.js hosted with ❤ by GitHub

1

2

3

4

5

6

7

8

9

const path = require('path');

module.exports = {

 entry: path.resolve(__dirname, 'src/index.js'),

 output: {

 path: path.resolve(__dirname, 'dist'),

 filename: '[name].[contenthash].js',

 },

};

view rawwebpack.config.js hosted with ❤ by GitHub

1

2

3

4

5

6

7

8

9

10

11

12

13

14

const path = require('path');

module.exports = {

 entry: path.resolve(__dirname, 'src/index.js'),

 output: {

 path: path.resolve(__dirname, 'dist'),

 filename: '[name].[contenthash].js',

 },

 optimization: {

 splitChunks: {

 chunks: 'all',

 },

 },

};

view rawwebpack.config.js hosted with ❤ by GitHub

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

const path = require('path');

const webpack = require('webpack');

module.exports = {

 entry: path.resolve(__dirname, 'src/index.js'),

 plugins: [

 new webpack.HashedModuleIdsPlugin(), // so that file hashes don't change unexpectedly

],

 output: {

 path: path.resolve(__dirname, 'dist'),

 filename: '[name].[contenthash].js',

 },

 optimization: {

 runtimeChunk: 'single',

 splitChunks: {

 chunks: 'all',

 maxInitialRequests: Infinity,

 minSize: 0,

 cacheGroups: {

 vendor: {

 test: /[\\/]node_modules[\\/]/,

 name(module) {

 // get the name. E.g. node_modules/packageName/not/this/part.js

 // or node_modules/packageName

 const packageName = module.context.match(/[\\/]node_modules[\\/](.*?)([\\/]|

 // npm package names are URL-safe, but some servers don't like @ symbols

 return `npm.${packageName.replace('@', '')}`;

 },

 },

 },

 },

 },

};

view rawwebpack.config.js hosted with ❤ by GitHub

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

module.exports = {

 entry: {

 main: path.resolve(__dirname, 'src/index.js'),

 ProductList: path.resolve(__dirname, 'src/ProductList/ProductList.js'),

 ProductPage: path.resolve(__dirname, 'src/ProductPage/ProductPage.js'),

 Icon: path.resolve(__dirname, 'src/Icon/Icon.js'),

 },

 output: {

 path: path.resolve(__dirname, 'dist'),

 filename: '[name].[contenthash:8].js',

 },

 plugins: [

 new webpack.HashedModuleIdsPlugin(), // so that file hashes don't change unexpectedly

],

 optimization: {

 runtimeChunk: 'single',

 splitChunks: {

 chunks: 'all',

 maxInitialRequests: Infinity,

 minSize: 0,

 cacheGroups: {

 vendor: {

 test: /[\\/]node_modules[\\/]/,

 name(module) {

 // get the name. E.g. node_modules/packageName/not/this/part.js

 // or node_modules/packageName

 const packageName = module.context.match(/[\\/]node_modules[\\/](.*?)([\\/]|

 // npm package names are URL-safe, but some servers don't like @ symbols

 return `npm.${packageName.replace('@', '')}`;

 },

 },

 },

 },

 },

};

F056&4G22#H527
RL("?@S$#*-Q",,*+

0.((.1

88C:K T8

UVO>VSS2&VWX&2YZUH! '[&\[QX

Sign in '*,&-,"+,*%

https://david-gilbertson.medium.com/?source=post_page-----f8a9df5b7758--------------------------------
https://medium.com/hackernoon?source=post_sidebar--------------------------post_sidebar-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fhackernoon%2Ff8a9df5b7758&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fhackernoon%2Fthe-100-correct-way-to-split-your-chunks-with-webpack-f8a9df5b7758&source=post_sidebar-----f8a9df5b7758---------------------clap_sidebar-----------
https://medium.com/hackernoon?source=post_page-----f8a9df5b7758--------------------------------
https://medium.com/?source=post_page-----f8a9df5b7758--------------------------------

S."%$/G&,1.&#*+-$./-&.I&,=*&-";*&847&KL&-$,*&]I+.;&0$+*)"-*&-,",$?&=.-,$/G^

On 3G and 4G this site loaded in 30% less time when there were 19 4les.

Or did it?

This is pretty noisy data. For example, on 4G on run 2, the site loaded in

646ms, then two runs later it took 1,116ms — 73% longer, with no change.

So it seems a bit sneaky to claim that HTTP/2 is ‘30% faster’.

(Coming soon: a custom chart type designed to visualise the di<erence in

page load times.)

I created this table to try and quantify what di<erence HTTP/2 made, but

really the only thing I can say is “it probably makes no signi4cant

di<erence”.

The real surprise was those last two rows. That’s old Windows and

HTTP/1.1 which I would have bet would be much slower. I guess I need

slower internet.

Story time! I downloaded a Windows 7 virtual machine from Microsoft’s

site to test these things.

It came with IE8, which I wanted to update to IE9.

So I headed over to Microsoft’s download page for IE9 and …

[Q'C&2Q\C&0QSC

One 4nal word on HTTP/2, did you know it’s built into Node now? If you

want to have a play, I wrote a little 100-line HTTP/2 server with gzip, brotli

and response caching for your testing pleasure.

That’s everything I have to say about bundle splitting. I think the only

downside to this approach is constantly having to convince people that

loading lots of small 4les is OK.

Now, to talk about the other type of 4le-chopping…

I2$&'()%*++*#,'J$2#=+'%20$'52$&'E2"'$2#=+'#&&$'+2K
This particular approach only makes sense on some sites, says me.

I like to apply the 20/20 rule that I just made up: if there’s a part of your site

that only 20% of users go to, and it’s bigger than 20% of your site’s

JavaScript, then you should only load that code on demand.

Adjust those numbers to taste, obviously, and there’s more complex

scenarios than that, obviously. The point is, there’s a balance, and it’s OK to

decide that code splitting simply doesn’t make sense for your site.

F2>'+2'$&5*$&@

Let’s say you’ve got a shopping site and you’re wondering if you should split

out the code for the ‘checkout’, because only 30% of your visitors make it

there.

The 4rst thing to do is sell better stu<.

The second thing is to work out how much code is completely unique to the

checkout. Since you should always do ‘bundle splitting’ before you do ‘code

splitting’, you might already know how big this part of your code is.

(It might be smaller than you think, so do the sums before you get too

excited. If you have a React site, for example, then your store, reducers,

routing, actions, etc. will all be shared across the whole site. The unique

parts will mostly be components and their helpers.)

So, you note that the code that is completely unique to your checkout page

is 7 KB. The rest of the site is 300 KB. I would look at this and say meh, I’m

not going to bother code splitting this, for a few reasons:

Loading it up front is no slower. Remember that you’re loading all these

4les in parallel. See if you can record a di<erence in the load times

between 300 KB and 307 KB.

If you load this code later, the user will have to wait for that 4le after

clicking on ‘TAKE MY MONEY’ — the very time at which you want the

least friction.

Code splitting requires changes to your application code. It introduces

asynchronous logic where previously there was only synchronous logic.

It’s not rocket science, but it’s complexity that I think should be justi4ed

by a perceivable improvement to the user experience.

OK, that’s all the party pooper “this exciting tech might not apply to you”

stu<.

Let’s look at two examples of code-splitting…

L2%E8*%%(

I’ll start with this because it applies to most sites, and is a nice simple

introduction.

I’m using a bunch of fancy features in my site, so I’ve got a 4le that imports

all the poly4lls I need. It includes these eight lines:

I import this 4le right at the top of my entry point, index.js .

With the Webpack con4g from the bundle splitting section, my poly4lls will

be automatically split into four di<erent 4les since there’s four npm

packages here. They’re about 25 KB all up, and 90% of browsers don’t need

them, so it’s worth loading these dynamically.

With Webpack 4 and the import() syntax (not to be confused with the

import syntax), conditionally loading the poly4lls is pretty easy.

Make sense? If all that stu< is supported, then render the page. Otherwise,

import poly4lls then render the page. When this code runs in the browser,

Webpack’s runtime will handle the loading of those four npm packages, and

when they’ve been downloaded and parsed, will call render() and things

will carry on.

(BTW, to use import() , you’ll need Babel’s dynamic-import plugin. Also, as

the Webpack docs explain, import() uses promises, so you’ll need to poly4ll

that separate to the other poly4lls.)

Easy, right?

Here’s something a bit trickier…

M2"+&N/0(&$'$E#07*5'%20$*#,'JM&05+'()&5*8*5K

Going back to the Alice example, let’s say that the site now has an

‘administration’ section, where sellers of products can log in and administer

the crap that they have for sale.

This section has many wonderful features, plenty of charts, and a big fat

charting library from npm. Because I was already doing bundle splitting, I

could see that these were a shade over 100 KB all up.

Currently, I have a routing setup that will render <AdminPage> when the

user is viewing an /admin URL. When Webpack bundles everything up, it’s

going to 4nd import AdminPage from './AdminPage.js' and say “hey, I need

to include this in the initial payload”.

But we don’t want it to. We need to put that reference to the admin page

inside a dynamic import, like import('./AdminPage.js') so that Webpack

knows to load it dynamically.

It’s pretty cool, no con4g required.

So instead of referring to AdminPage directly, I could create another

component that will be rendered when the user goes the the /admin URL. It

might look something like this:

The concept is pretty straightforward, right? When this component mounts

(meaning that the user is at the /admin URL), we’ll dynamically load

./AdminPage.js and then save a reference to that component in state.

In the render method, we simply render <div>Loading...</div> while we’re

waiting for the <AdminPage> to load, or the <AdminPage> once it’s been

loaded and stored in state.

I wanted to do this myself for fun, but in the real world, you’d just use

react-loadable , as described in the React docs on code-splitting.

Righto, I think that’s everything. Is there any point in saying what I already

said above, but in fewer words?

If people ever visit your site more than one time, split your code up into

many little 4les.

If you have large parts of your site that most users don’t visit, load that

code dynamically.

Thanks for reading, have a tops day!

Dammit I forgot to mention CSS.

1*,#'")'824'O&+'!&++&4'-&5.'P70*%('3*0'F056&4G22#H527
LF&\"?@*+_../C?.;

=.1&="?@*+-&-,"+,&,=*$+&"I,*+/../-C&,=*&+*"(&-=$,&$-&./&="?@*+/../C?.;C&Y"@*&"&(..@C

'*,&,=$-&/*1-(*,,*+

LF&-$G/$/G&A35&F.A&1$((&?+*",*&"&Q*%$A;&"??.A/,&$I&F.A&%./E,&"(+*"%F&="#*&./*C&W*#$*1&.A+&U+$#"?F&U.($?F&I.+&;.+*&$/I.+;",$./
").A,&.A+&3+$#"?F&3+"?,$?*-C

`"#"2?+$3, >*)3"?@ >*) >*)&!*#*(.3;*/, >*)-$,*

88C:K

Q24&'R427'Q&$*"7

:S'!0(*5'R"#$07&#+0%
I2#5&)+('28'T030154*)+

Q%&2="="%",&\.--"$/

D.&#'-2'1"/(54*/&

Q$?="*(&S.+,./&$/&V/GA("+&H/

!*3,=

F2>'+2'!"*%$'U2"4'V>#
I2$&)&#N1+E%&'P$*+24
W))

Q.-=*&K*+)*(&$/&0+./,*/%

>**@(F

<('W#,"%04'$E*#,'/&50"(&
28'M&05+@

V3=$/F"&!*?="(*+,&$/&="-=;"3

L0((*#,'<X'3(H'P#+*+E'0(
)42)('*#'M&05+

Q"+?.&$/&>**@(F&>*),$3-

O&++*#,'1+04+&$'D*+.
M&05+HT(

[@./A&!*).+"=&$/&>**@(F

>*),$3-

O&+'(+04+&$'2#'M&05+
G0+*3&'>*+.'PY)2

K"+.($/"&U.+?$./?A("

X&3&%2)*#,'I2#+&#+
Z0E2"+('824'I2#+&#+'0#$
PY)&4*&'I%2"$

2$#"@A;"+&L"("G.3"("/&$/

[+"?(*&!*#*(.3*+-

Z&04#'724&H
Q*%$A;&$-&"/&.3*/&3(",I.+;&1=*+*&8a7&;$(($./&+*"%*+-&?.;*
,.&I$/%&$/-$G=,IA(&"/%&%F/";$?&,=$/@$/GC&*+*5&*J3*+,&"/%
A/%$-?.#*+*%&#.$?*-&"($@*&%$#*&$/,.&,=*&=*"+,&.I&"/F&,.3$?&"/%
)+$/G&/*1&$%*"-&,.&,=*&-A+I"?*C&S*"+/&;.+*

Q06&'Q&$*"7'E2"4(H
0.((.1&,=*&1+$,*+-5&3A)($?",$./-5&"/%&,.3$?-&,=",&;",,*+&,.&F.A5
"/%&F.AE((&-**&,=*;&./&F.A+&=.;*3"G*&"/%&$/&F.A+&$/).JC
XJ3(.+*

1.04&'E2"4'+.*#6*#,H
HI&F.A&="#*&"&-,.+F&,.&,*((5&@/.1(*%G*&,.&-="+*5&.+&"
3*+-3*?,$#*&,.&.II*+&b&1*(?.;*&=.;*C&H,E-&*"-F&"/%&I+**&,.
3.-,&F.A+&,=$/@$/G&./&"/F&,.3$?C&>+$,*&./&Q*%$A;

V).A, *(3 S*G"(

Y.3&=$G=($G=,

view rawpolyfills.js hosted with ❤ by GitHub

1

2

3

4

5

6

7

8

require('whatwg-fetch');

require('intl');

require('url-polyfill');

require('core-js/web/dom-collections');

require('core-js/es6/map');

require('core-js/es6/string');

require('core-js/es6/array');

require('core-js/es6/object');

view rawindex-always-poly.js hosted with ❤ by GitHub

1

2

3

4

5

6

7

8

9

10

11

import './polyfills';

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App/App';

import './index.css';

const render = () => {

 ReactDOM.render(<App />, document.getElementById('root'));

}

render(); // yes I am pointless, for now

view rawindex-sometimes-poly.js hosted with ❤ by GitHub

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App/App';

import './index.css';

const render = () => {

 ReactDOM.render(<App />, document.getElementById('root'));

}

if (

 'fetch' in window &&

 'Intl' in window &&

 'URL' in window &&

 'Map' in window &&

 'forEach' in NodeList.prototype &&

 'startsWith' in String.prototype &&

 'endsWith' in String.prototype &&

 'includes' in String.prototype &&

 'includes' in Array.prototype &&

 'assign' in Object &&

 'entries' in Object &&

 'keys' in Object

) {

 render();

} else {

 import('./polyfills').then(render);

}

view rawAdminPageLoader.js hosted with ❤ by GitHub

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

import React from 'react';

class AdminPageLoader extends React.PureComponent {

 constructor(props) {

 super(props);

 this.state = {

 AdminPage: null,

 }

 }

 componentDidMount() {

 import('./AdminPage').then(module => {

 this.setState({ AdminPage: module.default });

 });

 }

 render() {

 const { AdminPage } = this.state;

 return AdminPage

 ? <AdminPage {...this.props} />

 : <div>Loading...</div>;

 }

}

export default AdminPageLoader;

Hackernoon Newsletter curates great
stories by real tech professionals

Get solid gold sent to your inbox. Every week!

Email

First Name Last Name

Sign Up

Terms of Service

Email

Last NameFirst Name

If you are ok with us sending you updates via email, please tick the box.
Unsubscribe whenever you want.

I agree to leave medium.com and submit this information, which will be
collected and used according to Upscribe's privacy policy.

Powered by Upscribe

O.A+&*;"$(

T8

>WHYYX_&LO

X03*$'O*%/&4+(2# 0.((.1

H&($@*&1*)&-,AIIC

F056&4G22#H527 0.((.1

X($D"=&Q?<("$/5&'*.+G*&0(.F%5&X+$?&'"+/*+5&L+*.//"&Y"F(.+5

V=;"A%&V+)*+F5&Q$?="*(&L+.1/5&[-?"+&'+"/,5&V,",$"/"

`*II*+-./5&Y";$+&W$?*5&L*,,$*&`./*-5&L.,=";&`*"/

https://webpack.js.org/guides/code-splitting/#dynamic-imports
https://medium.com/hackernoon/tagged/javascript
https://medium.com/hackernoon/tagged/webpack
https://medium.com/hackernoon/tagged/web
https://medium.com/hackernoon/tagged/web-development
https://medium.com/hackernoon/tagged/website
https://mdshahadathossain10200.medium.com/10-basic-fundamental-concepts-of-javascript-a8d616dbc733?source=post_internal_links---------0----------------------------
https://medium.com/angular-in-depth/when-to-subscribe-a83332ae053?source=post_internal_links---------1----------------------------
https://medium.com/front-end-weekly/how-to-build-your-own-codepen-app-a8a7140d52d7?source=post_internal_links---------2----------------------------
https://medium.com/madhash/is-angular-dying-because-of-react-a8e885f09421?source=post_internal_links---------3----------------------------
https://medium.com/weekly-webtips/passing-id-vs-entity-as-props-in-react-a8f54834a019?source=post_internal_links---------4----------------------------
https://medium.com/weekly-webtips/getting-started-with-react-js-a80990b6bcf7?source=post_internal_links---------5----------------------------
https://medium.com/@kporcioncula.04/get-started-on-react-native-with-expo-a80cf0086c66?source=post_internal_links---------6----------------------------
https://medium.com/oracledevs/developing-content-layouts-for-content-and-experience-cloud-a81bdbf39f62?source=post_internal_links---------7----------------------------
https://medium.com/about?autoplay=1&source=post_page-----f8a9df5b7758--------------------------------
https://medium.com/topics?source=post_page-----f8a9df5b7758--------------------------------
https://about.medium.com/creators/?source=post_page-----f8a9df5b7758--------------------------------
https://medium.com/?source=post_page-----f8a9df5b7758--------------------------------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fhackernoon%2Ff8a9df5b7758&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fhackernoon%2Fthe-100-correct-way-to-split-your-chunks-with-webpack-f8a9df5b7758&source=post_actions_footer-----f8a9df5b7758---------------------clap_footer-----------
https://david-gilbertson.medium.com/?source=follow_footer-------------------------------------

